Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
BMC Oral Health ; 23(1): 399, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328778

RESUMO

BACKGROUND: To investigate the effect of 0.3 M 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) aqueous solution pretreatment on push-out bond strength (PBS) and matrix-metalloproteinases (MMPs) activity within radicular dentin when different post cementation strategies were employed. METHODS: One hundred and twenty monoradicular human teeth were endodontically treated and randomly divided into six groups, depending on the cementation strategy and root dentin pretreatment (n = 20): EAR: cementation with an etch-and-rinse adhesive (LuxaBond Total Etch, DMG) and resin cement (LuxaCore Z Dual, DMG); EAR/EDC: 1 min EDC pretreatment after etching + EAR; SE: cementation with a self-etch primer (Multilink Primer, Ivoclar Vivadent) and corresponding cement (Multilink Automix, Ivoclar Vivadent); SE/EDC: self-etch primer + EDC pretreatment + SE; SA: cementation with a universal self-adhesive cement (RelyX Universal, 3 M); SA/EDC: EDC pretreatment + SA. Slices were submitted to PBS test and interfacial nanoleakage evaluation 24 h after cementation or after thermocycling (40.000 cycles, 5-55 °C). To investigate the effect of EDC on MMPs activity, 4 additional first maxillary premolars per group were processed for in situ zymography analysis. Multivariate ANOVA and post hoc Tukey tests were used to analyze PBS values. The data from in situ zymography were analyzed with Kruskal-Wallis test and Dunn's pairwise multiple comparison procedures (α = 0.05). RESULTS: The variables "EDC pretreatment", "root region" and "thermocycling" significantly influenced PBS (p < 0.05), while the variable "cementation strategy" had no influence (p > 0.05). Thermocycling significantly reduced PBS in SE and SA groups (p < 0.05). EDC was effective in preserving PBS after artificial aging. EDC pretreatment significantly reduced enzymatic activity at baseline in EAR and SE groups, and in SA group after thermocycling (p < 0.05). CONCLUSIONS: The use of EDC prevents the reduction of bond-strength values after artificial aging and silences endogenous enzymatic activity within radicular dentin when different cementation strategies were employed.


Assuntos
Colagem Dentária , Humanos , Carbodi-Imidas/química , Dentina , Cimentos de Resina/uso terapêutico , Cimentos de Resina/química , Metaloproteinases da Matriz , Teste de Materiais
2.
Int Wound J ; 20(5): 1566-1577, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36372945

RESUMO

Biological matrices can be modified with cross-linkers to improve some of their characteristics as scaffolds for tissue engineering. In this study, chemical cross-linker 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was used with different ratios (5, 10, 20, 30, and 40 mM) to improve properties such as mechanical strength, denaturation temperature, and degradability of the acellular fish skin as a biological scaffold for tissue engineering applications. Morphological analysis showed that the use of cross-linker at low concentrations had no effect on the structure and textiles of the scaffold, while increasing mechanical strength, denaturation temperature, and degradation time. Cytotoxicity and cellular studies showed that the optimal cross-linker concentration did not significantly affect cell viability as well as cell adhesion. In general, utilising the carbodiimide cross-linker with the optimal ratio can improve the characteristics and function of the biological tissues such as acellular fish skin.


Assuntos
Carbodi-Imidas , Tecidos Suporte , Animais , Tecidos Suporte/química , Carbodi-Imidas/química , Engenharia Tecidual , Cicatrização , Adesão Celular
3.
Chemistry ; 28(54): e202201768, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35835720

RESUMO

The ubiquity of amide bonds, present in natural products and common pharmaceuticals renders this functional group one of the most prevalent in organic chemistry. Despite its importance and a wide variety of existing methods for its formation, the latter still can be a challenge for classical activating reagents such as chloridating agents or carbodiimides. As the spent reagents often cannot be recycled, the development of more sustainable methods is highly desirable. Herein, we report an operationally simple and mild indirect electrochemical protocol to effect the condensation of carboxylic acids with amines, forming a wide variety of carboxamides.


Assuntos
Amidas , Produtos Biológicos , Amidas/química , Aminas/química , Carbodi-Imidas/química , Ácidos Carboxílicos/química , Indicadores e Reagentes , Iodetos , Preparações Farmacêuticas
4.
J Mater Sci Mater Med ; 33(3): 32, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35267104

RESUMO

Amniotic membrane (AM) is a biological tissue that surrounds the fetus in the mother's womb. It has pluripotent cells, immune modulators, collagen, cytokines with anti-fibrotic and anti-inflammatory effect, matrix proteins, and growth factors. In spite of the biological characteristics, some results have been released in preventing the adhesion on traumatized surfaces. Application of the AM as a scaffold is limited due to its low biomechanical resistance and rapid biodegradation. Therefore, for using the AM during surgery, its modification by different methods such as cross-linking of the membrane collagen is necessary, because the cross-linking is an effective way to reduce the rate of biodegradation of the biological materials. In addition, their cross-linking is likely an efficient way to increase the tensile properties of the material, so that they can be easily handled or sutured. In this regard, various methods related to cross-linking of the AM subsuming the composite materials, physical cross-linking, and chemical cross-linking with the glutraldehyde, carbodiimide, genipin, aluminum sulfate, etc. are reviewed along with its advantages and disadvantages in the current work.


Assuntos
Âmnio , Carbodi-Imidas , Âmnio/química , Materiais Biocompatíveis/química , Carbodi-Imidas/química , Colágeno/química , Reagentes de Ligações Cruzadas/química , Engenharia Tecidual/métodos , Tecidos Suporte/química
5.
Carbohydr Polym ; 280: 119029, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35027131

RESUMO

Stabilizing mechanisms through covalent and non-covalent interactions have been studied along the years for color stabilization of anthocyanin dyes. In this work, the chemical functionalization of a natural and biocompatible marine-based polysaccharide (alginic acid) with 3-aminophenylboronic acid via carbodiimide coupling chemistry was carried out in order to create a bifunctional material for pH-dependent selective interaction with colored cyanidin-3-glucoside chemical species. The interaction studies were performed by UV-Vis, 1H, and 11B NMR spectroscopy. Overall, the apparent acidic and hydration constants are more stabilized in the presence of phenylboronic acid-modified alginate. For more acidic pH values the red cationic flavylium cation of cyanidin-3-glucoside mainly interacts through non-covalent electrostatic interactions with the carboxylate groups of the biopolymer derivative with association constant around 0.5 mM-1 while at higher pH values boronate-catechol covalent bonds are favored, promoting the stabilization of the colored neutral and anionic quinoidal bases of anthocyanins instead of colorless hemiketal and chalcones.


Assuntos
Alginatos/química , Antocianinas/química , Ácidos Borônicos/química , Carbodi-Imidas/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrofotometria Ultravioleta
6.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885757

RESUMO

The 3-hydroxy-1,5-dihydro-2H-pyrrol-2-one motif is a valuable scaffold in drug discovery. The replacement of the 3-oxy fragment in 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones-based compounds with a 3-amino one (3-amino analogs of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones, 3-amino-1,5-dihydro-2H-pyrrol-2-ones) can play a crucial role in their biological effect. Thus, approaches to 3-amino-1,5-dihydro-2H-pyrrol-2-ones are of significant interest. We developed an approach to 5-spiro-substituted 3-amino-1,5-dihydro-2H-pyrrol-2-ones that could not be obtained using previously reported approaches (reactions of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones with amines). The developed approach is based on the thermal decomposition of 1,3-disubstituted urea derivatives of 5-spiro-substituted 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones, which were prepared via their reaction with carbodiimides.


Assuntos
Aminas/química , Descoberta de Drogas , Pirróis/química , Aminação , Carbodi-Imidas/química , Estrutura Molecular , Pirróis/síntese química
7.
J Clin Lab Anal ; 35(12): e24091, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34741352

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious and concealed virus that causes pneumonia, severe acute respiratory syndrome, and even death. Although the epidemic has been controlled since the development of vaccines and quarantine measures, many people are still infected, particularly in third-world countries. Several methods have been developed for detection of SARS-CoV-2, but owing to its price and efficiency, the immune strip could be a better method for the third-world countries. METHODS: In this study, two antibodies were linked to latex microspheres, using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide, as the bridge to decrease the cost further and improve the detection performance. The specificity of the lateral flow immunoassay strip (LFIA) was tested by several common viruses and respiratory bacterial infections. Besides, the reproducibility and stability of the LFIAs were tested on the same batch of test strips. Under optimal conditions, the sensitivity of LFIA was determined by testing different dilutions of the positive specimens. RESULTS: The proposed LFIAs were highly specific, and the limit of detection was as low as 25 ng/mL for SARS-CoV-2 antigens. The clinical applicability was evaluated with 659 samples (230 positive and 429 negative samples) by using both LFIA and rRT-PCR. Youden's index (J) was used to assess the performance of these diagnostic tests. The sensitivity and specificity were 98.22% and 97.93%, respectively, and J is 0.9615. The sensitivity and specificity were 98.22% and 97.93%, respectively, and J is 0.9615. In addition, the consistency of our proposed LFIA was analyzed using Cohen's kappa coefficient (κ = 0.9620). CONCLUSION: We found disease stage, age, gender, and clinical manifestations have only a slight influence on the diagnosis. Therefore, the lateral flow immunoassay SARS-CoV-2 antigen test strip is suitable for point-of-care detection and provides a great application for SARS-CoV-2 epidemic control in the third-world countries.


Assuntos
Antígenos Virais/análise , Teste Sorológico para COVID-19/métodos , Imunoensaio/métodos , Teste Sorológico para COVID-19/instrumentação , Carbodi-Imidas/química , Humanos , Imunoensaio/instrumentação , Látex/química , Metilaminas/química , Microscopia Eletrônica de Varredura , Microesferas , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Succinimidas/química
8.
Chem Pharm Bull (Tokyo) ; 69(11): 1061-1066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719587

RESUMO

γ-Amido-modified 2'-deoxynucleoside triphosphates (dNTPs) and nucleoside triphosphates (NTPs) are becoming increasingly important as biological tools. We herein describe the simple and easy synthesis of γ-amido-dNTPs and -NTPs from commercially available corresponding dNTPs and NTPs in a one-pot reaction using water-soluble carbodiimide and ammonia solution. We examined the effects of synthesized γ-amido-dNTPs on the DNA polymerase reaction. The results obtained showed the incorporation of these derivatives into the DNA primer while maintaining nucleobase selectivity; however, their incorporation efficiency by DNA polymerase was lower than that of dNTP. This is the first study to demonstrate the successful synthesis of four sets of γ-amido-dNTPs and clarify their properties.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos/síntese química , Polifosfatos/química , Amônia/química , Carbodi-Imidas/química , Cromatografia Líquida de Alta Pressão , Cinética , Solubilidade , Água
9.
ACS Appl Mater Interfaces ; 13(33): 39088-39099, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433242

RESUMO

In this work, we demonstrated that building different linking groups between nanodiamond (ND) and TiO2 (P25) could provide more effective protection under oxidative stress and ultraviolet (UV) light irradiation compared with the use of TiO2 alone. The establishment of ester (-C-O-O-R), amide (-CONH-), and epoxide-amine adduct (-NHCCO-) groups between ND-TiO2 composites was found to be critical in the generation of reactive oxygen species (ROS) by controlling their charge transfer behaviors. We hypothesized that linking groups between the composites dictate the performance of ROS generation from nano-TiO2 under UV-light irradiation due to the differences in linking groups. The results showed that hydroxyl radicals were attenuated by the incorporation of ND. An MTT cell proliferation assay was performed in human cells under the treatment of ND-TiO2 composites to investigate the impacts of composites on cell viability. The results from the luciferase reporter assay suggested they have anti-inflammatory activity and can reduce cellular DNA damage under ROS stimulation. A zebrafish model was also applied with the ND-TiO2 composite treatment to demonstrate the safety aspects of the composites in vivo and their biomedical application potential. Studies exploring ROS generation behaviors in different linking groups suggested that interactive functionalization between nanoparticles might be an ideal antioxidant and anti-inflammatory strategy.


Assuntos
Anti-Inflamatórios/química , Sequestradores de Radicais Livres/química , Nanocompostos/química , Nanodiamantes/química , Titânio/química , Amidas/química , Animais , Anti-Inflamatórios/farmacologia , Carbodi-Imidas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Esterificação , Sequestradores de Radicais Livres/farmacologia , Células HEK293 , Humanos , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Nanomedicina Teranóstica , Raios Ultravioleta , Peixe-Zebra
10.
Nat Protoc ; 16(8): 3901-3932, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34194049

RESUMO

Many supramolecular materials in biological systems are driven to a nonequilibrium state by the irreversible consumption of high-energy molecules such as ATP or GTP. As a result, they exhibit unique dynamic properties such as a tunable lifetime, adaptivity or the ability to self-heal. In contrast, synthetic counterparts that exist in or close to equilibrium are controlled by thermodynamic parameters and therefore lack these dynamic properties. To mimic biological materials more closely, synthetic self-assembling systems have been developed that are driven out of equilibrium by chemical reactions. This protocol describes the synthesis and characterization of such an assembly, which is driven by carbodiimide fuels. Depending on the amount of chemical fuel added to the material, its lifetime can be tuned. In the first step, the protocol details the synthesis and purification of the peptide-based precursors for the fuel-driven assemblies by solid-phase peptide synthesis. Then, we explain how to analyze the kinetic response of the precursors to a carbodiimide-based chemical fuel by HPLC and kinetic models. Finally, we detail how to study the emerging assembly's macro- and microscopic properties by time-lapse photography, UV-visible spectroscopy, shear rheology, confocal laser scanning microscopy and electron microscopy. The procedure is described using the example of a colloid-forming precursor Fmoc-E-OH and a fiber-forming precursor Fmoc-AAD-OH to emphasize the differences in characterization depending on the type of assembly. The characterization of a precursor's transient assembly can be done within 5 d. The synthesis and purification of a peptide precursor requires 2 d of work.


Assuntos
Carbodi-Imidas/química , Substâncias Macromoleculares/química , Microscopia Crioeletrônica , Humanos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Estrutura Molecular
11.
Carbohydr Polym ; 267: 118226, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119179

RESUMO

We report here a one-step aqueous method for the synthesis of isolated and purified polysaccharide-amino acid conjugates. Two different types of amino acid esters: glycine methyl ester and L-tryptophan methyl ester, as model compounds for peptides, were conjugated to the polysaccharide carboxymethylcellulose (CMC) in water using carbodiimide at ambient conditions. Detailed and systematic pH-dependent charge titration and spectroscopy (infrared, nuclear magnetic resonance: 1H, 13C- DEPT 135, 1H- 13C HMBC/HSQC correlation), UV-vis, elemental and ninhydrin analysis provided solid and direct evidence for the successful conjugation of the amino acid esters to the CMC backbone via an amide bond. As the concentration of amino acid esters increased, a conjugation efficiency of 20-80% was achieved. Activated charcoal aided base-catalyzed deprotection of the methyl esters improved the solubility of the conjugates in water. The approach proposed in this work should have the potential to tailor the backbone of polysaccharides containing di- or tri-peptides.


Assuntos
Carbodi-Imidas/química , Carboximetilcelulose Sódica/análogos & derivados , Glicina/análogos & derivados , Indicadores e Reagentes/química , Triptofano/análogos & derivados , Carboximetilcelulose Sódica/síntese química , Glicina/síntese química , Estrutura Molecular , Triptofano/síntese química
12.
Biomed Mater ; 16(4)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33979785

RESUMO

Currently, valve replacement surgery is the only therapy for the end-stage valvular diseases because of the inability of regeneration for diseased heart valves. Bioprosthetic heart valves (BHVs), which are mainly derived from glutaraldehyde (GA) crosslinked porcine aortic heart valves or bovine pericardium, have been widely used in the last decades. However, it is inevitable that calcification and deterioration may occur within 10-15 years, which are still the main challenges for the BHVs in clinic. In this study, N-Lauroylsarcosine sodium salt (SLS) combined with N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were utilized to decellularize and crosslink the heart valves instead of GA treatment. The obtained BHVs exhibited excellent extracellular matrix stability and mechanical properties, which were similar with GA treatment. Moreover, the obtained BHVs exhibited betterin vitrobiocompatibilities than GA treatment. After subcutaneous implantation for 30 d, the obtained BHVs showed mitigated immune response and reduced calcification compare with GA treatment. Therefore, all the above results indicated that the treatment of SLS-based decellularization combined with EDC/NHS crosslink should be a promising method to fabricate BHVs which can be used in clinic in future.


Assuntos
Bioprótese , Carbodi-Imidas/química , Matriz Extracelular Descelularizada/química , Detergentes/química , Próteses Valvulares Cardíacas , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Calcinose/prevenção & controle , Carbodi-Imidas/farmacologia , Reagentes de Ligações Cruzadas/química , Masculino , Ratos , Ratos Sprague-Dawley
13.
Carbohydr Polym ; 262: 117902, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838793

RESUMO

In recent years, harmful microorganisms in water pose great harm to ecological environment and human health. To solve this problem, epsilon-poly-l-lysine (EPL) grafted cellulose beads were prepared via 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) mediated oxidation and carbodiimide mediated cross-linking reaction. Hydroxyl groups on C6 of cellulose were oxidized to carboxyl groups by TEMPO and grafting reaction was achieved between newly formed carboxyl groups of cellulose and amino of EPL. The beads were characterized by FTIR, SEM, XRD and TGA. The crystalline form of cellulose transformed from cellulose I to cellulose II after being dissolved and regenerated. The grafted cellulose beads showed good antibacterial activities against Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus and Alicyclobacillus acidoterrestris with 10 h. The beads could be biodegraded in soil after 28 days. It is expected that the bio-based composite beads could have potential applications in water purification and food treatment fields.


Assuntos
Antibacterianos/química , Celulose/química , Polilisina/química , Alicyclobacillus/efeitos dos fármacos , Antibacterianos/farmacologia , Carbodi-Imidas/química , Celulose Oxidada/química , Reagentes de Ligações Cruzadas/química , Óxidos N-Cíclicos/química , Escherichia coli/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura/métodos , Oxirredução , Polilisina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria/métodos , Microbiologia da Água , Purificação da Água/métodos , Difração de Raios X/métodos
14.
Org Lett ; 23(5): 1726-1730, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617265

RESUMO

The first example of a carbodiimide-mediated P-C bond-forming reaction is described. The reaction involves activation of ß-carboxyethylphosphinic acids and subsequent reaction with Boc-aminals using acid-catalysis. Mechanistic experiments using 31P NMR spectroscopy and DFT calculations support the contribution of unusually reactive cyclic phosphinic/carboxylic mixed anhydrides in a reaction pathway involving ion-pair "swapping". The utility of this protocol is highlighted by the direct synthesis of Boc-protected phosphinic dipeptides, as precursors to potent Zn-aminopeptidase inhibitors.


Assuntos
Carbodi-Imidas/química , Dipeptídeos/química , Compostos Organofosforados/química , Alquilação , Aminoácidos/química , Anidridos/química , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular
15.
Biosensors (Basel) ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429883

RESUMO

The CRISPR-Cas9 system has facilitated the genetic modification of various model organisms and cell lines. The outcomes of any CRISPR-Cas9 assay should be investigated to ensure/improve the precision of genome engineering. In this study, carbon nanotube-modified disposable pencil graphite electrodes (CNT/PGEs) were used to develop a label-free electrochemical nanogenosensor for the detection of point mutations generated in the genome by using the CRISPR-Cas9 system. Carbodiimide chemistry was used to immobilize the 5'-aminohexyl-linked inosine-substituted probe on the surface of the sensor. After hybridization between the target sequence and probe at the sensor surface, guanine oxidation signals were monitored using differential pulse voltammetry (DPV). Optimization of the sensitivity of the nanogenoassay resulted in a lower detection limit of 213.7 nM. The nanogenosensor was highly specific for the detection of the precisely edited DNA sequence. This method allows for a rapid and easy investigation of the products of CRISPR-based gene editing and can be further developed to an array system for multiplex detection of different-gene editing outcomes.


Assuntos
Técnicas Biossensoriais/instrumentação , Engenharia Genética/instrumentação , Nanotubos de Carbono/química , Proteínas Nucleares/genética , Mutação Puntual , Células 3T3 , Animais , Sistemas CRISPR-Cas , Carbodi-Imidas/química , Eletrodos , Grafite/química , Limite de Detecção , Camundongos , Mutagênese Sítio-Dirigida
16.
Carbohydr Polym ; 255: 117337, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436180

RESUMO

Pathogens in the food and environment pose a great threat to human health. To solve this problem, we described a novel route to synthesize antibacterial epsilon-poly-L-lysine (EPL) anchored dicarboxyl cellulose beads. Cellulose beads were prepared via a sol-gel transition method and oxidized by sodium periodate and sodium chlorite to form carboxyl groups. EPL was anchored on the beads using carbodiimide mediated amidation. The structure and morphology of beads were characterized by FTIR, XPS, XRD, SEM, and TGA. After dissolution and regeneration, the crystalline form of cellulose is transformed from cellulose I to cellulose II. The thermal degradation temperature of the beads is 200∼300 °C.The samples displayed excellent antimicrobial activity against Staphylococcus aureus, Alicyclobacillus acidoterrestris and Escherichia coli within 12 h. The beads could be biodegraded in soil after 20 days. The biodegradable beads exhibited great potential in food and environmental applications.


Assuntos
Alicyclobacillus/efeitos dos fármacos , Antibacterianos/farmacologia , Celulose/farmacologia , Escherichia coli/efeitos dos fármacos , Polilisina/química , Staphylococcus aureus/efeitos dos fármacos , Alicyclobacillus/crescimento & desenvolvimento , Antibacterianos/síntese química , Biodegradação Ambiental , Carbodi-Imidas/química , Celulose/análogos & derivados , Cloretos/química , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Oxirredução , Ácido Periódico/química , Transição de Fase , Staphylococcus aureus/crescimento & desenvolvimento
17.
Angew Chem Int Ed Engl ; 60(23): 12648-12658, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264456

RESUMO

Biochemical systems accomplish many critical functions with by operating out-of-equilibrium using the energy of chemical fuels. The formation of a transient covalent bond is a simple but very effective tool in designing analogous reaction networks. This Minireview focuses on the fuel chemistries that have been used to generate transient bonds in recent demonstrations of abiotic nonequilibrium systems (i.e., systems that do not make use of biological components). Fuel reactions are divided into two fundamental classifications depending on whether the fuel contributes structural elements to the activated state, a distinction that dictates how they can be used. Reported systems are further categorized by overall fuel reaction (e.g., hydrolysis of alkylating agents, carbodiimide hydration) and illustrate how similar chemistry can be used to effect a wide range of nonequilibrium behavior, ranging from self-assembly to the operation of molecular machines.


Assuntos
Alquilantes/química , Carbodi-Imidas/química , Hidrólise , Estrutura Molecular
18.
ACS Appl Bio Mater ; 4(2): 1771-1782, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014523

RESUMO

In this study, dopamine-functionalized gellan gum (DFG) hydrogel was prepared as a carrier for retinal pigment epithelium (RPE) cell delivery via a carbodiimide reaction. The carboxylic acid of gellan gum (GG) was replaced with catechol in a 21.3% yield, which was confirmed by NMR. Sol fraction and weight loss measurements revealed that dopamine improved degradability in the GG hydrogel. Measurements of the viscosity, injection force, and compressibility also showed that dopamine-functionalized GG hydrogels had more desirable rheological/mechanical properties for improving injectability. These characteristics were confirmed to arise from the GG's helix structure loosened by the dopamine's bulky nature. Moreover, dopamine's hydrophilic characteristics were confirmed to create a more favorable microenvironment for cell growth by promoting swelling capability and cell attachment. This improved biocompatibility became more pronounced when the hydrophilicity of dopamine was combined with a larger specific surface area stemming from the less porous structure of the dopamine-grafted hydrogels. This effect was apparent from the live/dead staining images of the as-prepared hydrogels. Meanwhile, the nonionic cross-linked DFG (DG) hydrogel showed the lowest protein expression in the immunofluorescence staining images obtained after 28 days of culture, supporting that it had the highest degradability and associated cell-releasing ability. That tendency was also observed in the gene expression data acquired by real-time polymerase chain reaction (RT-PCR) analysis. RT-PCR analysis also revealed that the DG hydrogel carrier could upregulate the visual function-related gene of RPE. Overall, the DG hydrogel system demonstrated its feasibility as a carrier of RPE cells and its potential as a means of improving visual function.


Assuntos
Materiais Biocompatíveis/química , Carbodi-Imidas/farmacologia , Dopamina/química , Hidrogéis/química , Polissacarídeos Bacterianos/química , Epitélio Pigmentado da Retina/efeitos dos fármacos , Materiais Biocompatíveis/síntese química , Carbodi-Imidas/química , Células Cultivadas , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Humanos , Teste de Materiais
19.
Carbohydr Polym ; 254: 117299, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357867

RESUMO

Naturally derived antimicrobial peptides (AMPs) are an attractive source of new antimicrobial agents. However, clinical application of AMPs is associated with poor bioavailability and toxicity. In this study, we address these limitations by designing a new series of chitosan derivatives to mimic the amphiphilic topology of AMPs. The synthesized chitosan derivatives were found to self-assemble into nanoparticles in the aqueous environment. Among the compounds, a chitosan derivative grafted with arginine and oleic acid (CH-Arg-OA) exhibited the most potent antimicrobial activity, especially against Gram-negative bacteria. It also caused minimal cell death when tested in HEK293 and HepG2 cell lines, thus confirming the role of cationicity and lipophilicity for selective bacteria targeting. CH-Arg-OA exhibited its antimicrobial activity by disrupting bacterial membranes and causing the leakage of cytoplasmic contents. Thus, amphiphilic chitosan nanoparticles offer a great promise as a new class of AMPs mimics that is effective against Gram-negative bacteria.


Assuntos
Antibacterianos/química , Arginina/química , Materiais Biomiméticos/química , Quitosana/química , Nanopartículas/química , Ácido Oleico/química , Tensoativos/química , Peptídeos Catiônicos Antimicrobianos/química , Membrana Externa Bacteriana/efeitos dos fármacos , Biomimética/métodos , Carbodi-Imidas/química , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/metabolismo , Células HEK293 , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana
20.
J Mater Sci Mater Med ; 31(11): 93, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108503

RESUMO

Bio-based coatings and release systems for pro-angiogenic growth factors are of interest to overcome insufficient vascularization and bio-integration of implants. This study compares different biopolymer-based coatings on polyethylene terephthalate (PET) membranes in terms of coating homogeneity and stability, coating thickness in the swollen state, endothelial cell adhesion, vascular endothelial growth factor (VEGF) release and pro-angiogenic properties. Coatings consisted of carbodiimide cross-linked gelatin type A (GelA), type B (GelB) or albumin (Alb), and heparin (Hep), or they consisted of radically cross-linked gelatin methacryloyl-acetyl (GM5A5) and heparin methacrylate (HepM5). We prepared films with thicknesses of 8-10 µm and found that all coatings were homogeneous after washing. All gelatin-based coatings enhanced the adhesion of primary human endothelial cells compared to the uncoated membrane. The VEGF release was tunable with the loading concentration and dependent on the isoelectric points and hydrophilicities of the biopolymers used for coating: GelA-Hep showed the highest releases, while releases were indistinguishable for GelB-Hep and Alb-Hep, and lowest for GM5A5-HepM5. Interestingly, not only the amount of VEGF released from the coatings determined whether angiogenesis was induced, but a combination of VEGF release, metabolic activity and adhesion of endothelial cells. VEGF releasing GelA-Hep and GelB-Hep coatings induced angiogenesis in a chorioallantoic membrane assay, so that these coatings should be considered for further in vivo testing.


Assuntos
Biopolímeros/química , Materiais Revestidos Biocompatíveis/química , Fator A de Crescimento do Endotélio Vascular/química , Albuminas/química , Animais , Carbodi-Imidas/química , Adesão Celular , Galinhas , Membrana Corioalantoide/metabolismo , Heparina/química , Humanos , Hidrogéis/química , Ponto Isoelétrico , Membranas Artificiais , Microscopia Eletrônica de Varredura , Neovascularização Patológica , Neovascularização Fisiológica , Polietilenotereftalatos/química , Proteínas Recombinantes/química , Engenharia Tecidual , Tecidos Suporte , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...